US7798515B2 - Folding baby stroller system and method

29 Apr.,2024

 

US7798515B2 - Folding baby stroller system and method

CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. Ser. No. 11/254,922 filed Oct. 20, 2005, which is a continuation of U.S. Ser. No. 10/430,688 filed May 5, 2003, now U.S. Pat. No. 6,991,248.

If you are looking for more details, kindly visit Baby Stroller Factory.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to baby strollers, and more particularly, to all-terrain baby strollers that can be folded.

2. Description of the Related Art

Traditionally, baby strollers have been used to push an infant slowly on a relatively hard, smooth floor or sidewalk. As a result, the strollers were made small and light. These strollers work well enough at slow speed, but are extremely unwieldy and even dangerous on rough surfaces or at higher speeds.

All-terrain baby strollers have been designed to overcome these problems. These strollers typically employ much larger wheels, often large bicycle tires. The stroller frame members are constructed of metal tubular stock and durable plastic frame connectors or other durable material to connect the frame members together to handle the heavy duty use they may receive. The frame connectors are used also to rotate or pivot one frame member relative to another, and are used to removably connect other frame members together.

Some advanced designs of all-terrain strollers have allowed for a certain degree of folding of the all-terrain baby strollers into less than a desirable amount of compactness. In addition, conventional folding mechanisms include complications that increase cost and reduce reliability and ease of use.

BRIEF SUMMARY OF THE INVENTION

The present invention resides in a folding baby stroller system and method. Embodiments include a front wheel and left and right side laterally spaced-apart front wheel supports. Each of the left and right side front wheel supports has a forward end portion and a rearward end portion. The front wheel is mounted to the forward end portion of at least one of the front wheel supports, the left and right side front wheel supports being rotatable as a unit. Further included are left and right rear wheels, and left and right side laterally spaced-apart rear wheel supports. Each of the left and right side rear wheel supports has a lower end portion and an upper end portion, the lower end portions being coupled to at least one of the left and right rear wheels. Further included are left and right side laterally spaced-apart handle members. Each of the left and right side handle members has a forward end portion and a rearward end portion with a handle portion, the left and right side handle members being rotatable as a unit. Further included are left and right side laterally spaced-apart folding assemblies. Each of the left and right side folding assemblies has a first rotatable member and second rotatable member rotatably coupled to a pivot member supported by the upper end portion of a corresponding one of the left and right side rear wheel supports for rotation about a common axis of rotation and independently rotatable relative to each other. The rearward end portion of a corresponding one of the left and right side front wheel supports is fixedly attached to the first rotatable member, and the forward end portion of a corresponding one of the left and right side handle members is fixedly attached to the second rotatable member.

Other features and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

FIG. 1 is an isometric view of an exemplary implementation of a baby stroller embodying the present invention shown in a fully unfolded state ready for usage.

FIG. 2 is an isometric view of the stroller frame of FIG. 1 without a seat and a leg guard.

FIG. 3 is a front elevational view of the stroller frame of FIG. 2.

FIG. 4 is a side elevational view of the stroller frame of FIG. 2.

FIG. 5 is a front elevational view of the stroller frame of FIG. 2 shown in a partially folded state with left and right front supports being rotated about their respective side folding assemblies toward respective side rear wheel supports.

FIG. 6 is a side elevational view of the stroller frame of FIG. 2 shown in the partially folded state of FIG. 5.

FIG. 7 is a side elevational view of the stroller frame of FIG. 2 shown in a fully folded state with both left and right front supports and left and right side handle supports being rotated about their respective side folding assemblies toward respective side rear wheel supports.

FIG. 8 is an exploded isometric view of one of left and right side folding assemblies of the implementation shown in FIG. 1.

FIG. 9 is an enlarged, fragmentary, side elevational view of the stroller frame of FIG. 2 in the fully unfolded state better illustrating one of the side folding assemblies.

FIG. 10 is a side elevational view of the stroller frame in the fully unfolded state of FIG. 9 showing internal components of one of the side folding assemblies.

FIG. 11 is the side elevational view of the stroller frame in the fully unfolded state of FIG. 9 with the internal components of the side folding assembly shown in broken line.

FIG. 12 is the side elevational view of the stroller frame of FIG. 11 in the fully folded state with the internal components of the side folding assembly shown in broken line.

DETAILED DESCRIPTION OF THE INVENTION

As shown in the drawings for purposes of illustration, the present invention is embodied in an all-terrain baby stroller 10, as shown in FIG. 1, having a foldable, tubular metal frame 12 and a transversely extending rear axle assembly 14 with a transverse, non-rotating tubular rear axle 15. Left and right side rear wheels 16 are rotatably mounted to the ends of the rear axle assembly 14. The forward end of the frame 12 has a single front wheel 18 rotatably mounted thereto.

The frame 12 has no base frame members extending rearwardly from the front wheel 18 to the rear axle assembly 14 as do most conventional all-terrain strollers. Instead, the frame 12 includes left and right side, downwardly and forwardly sloping front wheels frame members or supports 20, which each extend downward from a corresponding one of left and right side folding assemblies 22 in a converging configuration to the front wheel 18. A forward free-end 20 a of each of the left and right side front wheel supports 20 has a plastic front wheel connector (not shown) fixedly attached thereto and a corresponding one of the left and right ends of an axle 18 a of the front wheel 18 removably attached thereto to mount the front wheel to the stroller frame 12.

The front wheel supports 20 are interconnected by a foot rest 28 that spans between them toward but rearward of their forward free-ends 20 a and that is fixedly attached to each at a position just above the front wheel 18 and just rearward of the axle 18 a of the front wheel. As a result of the interconnection provided by the foot rest 28, and also the front wheel 18 when attached to the left and right side front wheel connectors, the left and right side front wheel supports 20 form a stationary unit with respect to the left and right side folding assemblies 22 upon folding and unfolding of the stroller 10, as will be described in greater detail below.

The frame 12 also includes left and right side, upwardly and rearwardly sloping handle frame members or supports 24, which each extend upward from the corresponding one of the left and right side folding assemblies 22 in a generally parallel configuration to a handle 26 extending between the left and right side handle supports. The handle 26 is covered by a foam grip. The handle supports 24 are interconnected by the handle 26 that spans between them at their rearwardmost and uppermost extension and that is fixedly attached to each.

Contact us to discuss your requirements of OEM/ODM Service For Strollers. Our experienced sales team can help you identify the options that best suit your needs.

As a result of the interconnection provided by the handle 26, the left and right side handle supports 24 move as a unit with respect to the left and right side folding assemblies 22 upon folding and unfolding of the stroller 10, as will be described in greater detail below. It is noted that in lieu of the interconnecting handle 26, the handle supports 24 may each be provided with a handle portion at the upper end thereof such as used with umbrella style strollers.

In the illustrated embodiment of the invention the left and right side handle supports 24 and the handle 26 are formed as an integral unit by bending a single length of aluminum tube. The left and right side handle supports 24 are movable relative to the left and right side front wheel supports 20 for folding of the stroller 10 and do not together form an integrated rigid upper frame. The left and right side handle supports 24 are also movable independent from movement of the left and right side front wheel supports 20.

The frame 12 also includes left and right side, downwardly and rearwardly sloping rear wheel frame members or supports 30, which each extend downward from the corresponding one of the left and right side folding assemblies 22 in a generally parallel configuration to the rear axle assembly 14. A rearward free-end 30 a of each of the left and right side rear wheel supports 30 is fixedly attached to a corresponding one of the left and right ends of the tubular rear axle 15. The rear wheel supports 30 are interconnected by the rear axle assembly 14 that spans between them at the rearward free-ends 30 a thereof. As a result of the interconnection provided by the rear axle assembly 14, the left and right side rear wheel supports 30 move as a unit with respect to the left and right folding assemblies 22 for folding and unfolding of the stroller 10, as will be described in greater detail below. The left and right side rear wheel supports 30 are also movable relative to the left and right side front wheel supports 20 and the left and right side handle supports 24 for folding of the stroller 10. Further, the left and right side rear wheel supports 30 and the rear axle assembly 14 connected thereto do not form a part of a base frame extending between the rear and front wheels 16 and 18. Much of the structural strength of the stroller 10 and the interconnection of the forward wheel supports 20, the handle supports 24, and the rearward wheel supports 30 are provided by the centrally positioned left and right side folding assemblies 22, and not by a base frame.

In the illustrated embodiment of the stroller 10, the left and right side front wheel supports 20, the left and right side handle supports 24, and the left and right side rear wheel supports 30 are made from aluminum tube. Suitable alternative materials may be used.

The left and right outward ends of the tubular rear axle 15 are open and internally threaded to receive a threaded stub axle 32 forming a part of the corresponding one of the left and right rear wheels 16. A lock nut (not shown) when tightened against the face of the stub axle 32 locks the stub axle against loosening during usage of the stroller 10. Alternative constructions may be used to fixedly or removably attach the rear wheels 16 to the tubular rear axle 15, and any suitable alternative manner of mounting the rear wheels 16 to the real wheel supports 30 may be used with or without a park brake.

The frame 12 of the stroller 10 is shown in FIG. 1 in the fully unfolded state with a fabric seat 2, fabric leg support and guard 3. For purposes of illustration, the frame 12 is shown in FIG. 2 without the seat 2 and the leg guard 3. The seat 2 is suspended from the left and right side handle supports 24, and the leg guard 3 spans between and is supported by the left and right side front wheel supports 20.

For the depicted implementation, user operation of the left and right side folding assemblies 22 will now be described. The left and right side folding assemblies 22 have the same construction, and the description below while in the singular is applicable to both. Each of the left and right rear wheel supports 30 supports an inwardly extending lever 34, which has a predominantly vertical orientation, as shown in FIG. 3, when the frame 12 of the stroller 10 is locked in the fully unfolded position. To begin the procedure to fold the frame 12, each of the levers 34 are pulled upward and inward as depicted by arrows R1 to thereby put the folding assemblies 22 in an unlocked state as further explained below.

With each of the left and right folding assemblies 22 in an unlocked state, the left and right handle supports 24, along with the handle 26, and the left and right forward wheel support 20, along with the forward wheel 18, can be rotated about the left and right folding assemblies, respectively, toward the left and right rear wheel supports 30, respectively, as depicted by arrows R2 shown in FIG. 4. As stated, the forward wheel supports 20 can be moved independently from movement of the handle supports 24. In the process of folding the frame 12, if the forward wheel supports 20 were to be rotated about the folding assemblies 22 before rotation of the handle supports 24 about the folding assemblies, then the frame 12 would appear in a partially folded state as shown in the front elevational view of FIG. 5 and the side elevational view of FIG. 6. In a fully folded state, both the forward wheel supports 20 and the handle supports 24 have been rotated about the folding assemblies 22 to be positioned in close proximity to the rear wheel supports 30 as shown in the side elevational view of FIG. 7.

As shown in FIG. 8, each of the folding assemblies 22 includes a forward rotatable member 35′ having a disk 36′ with a notch 38′ and an arm 40′, and a rearward rotatable member 35″ having a disk 36″ with a notch 38″ and an arm 40″. The disks 36′ and 36″ and the arms 40′ and 40″ are depicted in FIG. 8 as being part of a single formed piece; however, in other implementations the disks and arms are individual pieces that are fixedly attached together. The rotatable members 35′ and 35″, along with a corresponding one of the rear wheel supports 30, are contained between left and right slotted halves of a housing 42 that allow the arms 40′ and 40″ to protrude outside of the housing. The inside wall of each half of the housing 42 has recess 42 a sized and shaped such that when the two halves of the housing are positioned together, the recesses form a cavity to securely receive the upper free-end portion of the rear wheel support 30 therein. The disks 36′ and 36″ each have a central aperture 41′ and 41″, respectively, sized to receive a bushing 43 therethrough having a length longer than the cumulative thickness of the two disks. When the folding assembly 22 is assembled, the disks 36′ and 36″ are arranged facing each other with the bushing 43 extending through the aligned apertures 41′ and 41″ of the disks, and this subassembly is positioned in a slot 30 b in the enlarged, upper free-end portion of the real wheel support 30. The slot 30 b has a forward to rearward orientation. A central aperture 43 a of the bushing 43 is aligned with a pair of opposing inward and outward side apertures 30 c of the rear wheel support 30, transverse to the orientation of the slot 30 b, and the left and right slotted halves of the housing 42 clamp around the slotted upper free-end portion of the rear wheel support 30. The left and right slotted halves of the housing 42 have opposing apertures 42 b, which align with the central aperture 43 a of the bushing 43, such that a bolt 44 extends fully through the apertures 42 b of the halves of the housing 42, through the aperture 30 c of the rear wheel support 30, and through the central aperture 43 a of the bushing 43. A nut 44 a is threaded onto the threaded end of the bolt 44 to hold the assembly together with the disks 36′ and 36″ freely rotatable on the bushing 43. With this assembly, the bolt 44 and nut 44 a hold the left and right slotted halves of the housing 42 securely clamped together with the slots of the housing having the arms 40′ and 40″ extending therethrough. The arm 40′ extends forwardly through the forward opening of the slot 30 b and the other arm 40″ extends rearwardly through the rearward opening of the slot 30 b in the rear wheel support 30.

When the folding assemblies 22 are in a fully unfolded state, as shown in FIG. 9, the disks 36′ and 36″ of the folding assembly are locked in place by components positioned internal to the rear wheel supports 30 including a slidably mounted head 50 with a tip 52 inserted into the notches 38′ and 38″ as shown in FIG. 10. In FIG. 10, a cover portion 30 d of the upper free-end portion of the rear wheel support 30 is shown removed in order to better illustrate the components of the folding assembly 22 contained therein. The cover portion 30 d is attached to the other portion of the free-end portion of the rear wheel support 30 by a bolt 30 e, as seen in FIG. 9. The lever 34 is pivotally mounted to the rear wheel support 30 and the head 50 is mechanically linked to the lever 34 so that when the lever 34 is pulled upward and inward as depicted by the arrows R1 in FIG. 5, the head 50 is moved away from the disks 36′ and 36″, thereby causing the tip 52 to be retracted and disengaged from the notches 38′ and 38″. The disks 36′ and 36″ are then free to rotate on the bolt 44 and hence allow folding of the front wheel support 20 and the handle support 24 about the rear wheel support 30 in a clam shell movement, as will be explained in greater detail below.

The head 50 further includes a base 54, which rests against one end of a spring 56. The other end of the spring 56 rests against an internal support 58 inside the rear wheel support 30 such that the spring provides a force adequate to bias the tip 52 into an engaged state within the notches 38′ and 38″ of the disks 36′ and 36″ when the folding assembly 22 is in the fully unfolded state. While supplying a force to the head 50 to keep the tip 52 in the notches 38′ and 38″, the force is not so great as to require undue force to be applied to the lever 34 by the user to retract and disengage the tip from the notches when the folding assembly is to be folded.

The internal support 58 is coupled to or may be an integral part of the rearward free-end 30 a of the rear wheel support 30 to couple the folding assembly 22 to the rear axle assembly 14. As shown in FIGS. 11 and 12, for each of the folding assemblies 22 on the left and right sides of the stroller 12, the front wheel support 20 is bolted onto the arm 40′ of the forward rotatable member 35′ using a pair of bolts 60, and the handle support 24 is bolted onto the arm 40″ of the rearward rotatable member 35″ using a pair of bolts 62.

In the fully folded state of the stroller 12, both the front wheel support 20 and the handle support 24 are moved into close proximity to the rear wheel support 30. As shown in FIG. 12, in the fully folded state, the tip 52 of the head 50 is retracted and disengaged from the notch 38′ of the forward rotatable member 35′ and the notch 38″ of the rearward rotatable member 35″. In the fully folded state, both the front wheel support 20 and the handle support 24 are free to rotate independently of the other about the bolt 44 of the folding assembly 22 so that the notches 38′ and 38″ can be brought back into alignment with the tip 52 of the head 50 to consequently secure the stroller 12 into the fully folded state.

From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. For instance, the depicted implementation used the bolt 44 and nut 44 a assembly to rotatably couple the forward rotatable member 35′ and the rearward rotatable member 35″ together with a corresponding one of the rear wheel supports 30. In other implementations, pivot members other than the bolt-nut assembly may be used, including pin assemblies. As another example, in the depicted implementation, the rear wheel supports 30 supported the bolt 44 on which the rotatable members 35′ and 35″ where rotatably mounted. In other implementations, either the front wheel support 20 can support the bolt 44 and have the rotatable members 35′ and 35″ rotatably mounted thereon with the arms 40′ and 40″ each fixedly attached to one of the handle support 24 and the rear wheel support 30 such that the handle support and the rear wheel support fold about the front wheel support, or the handle support 24 can support the bolt 44 and have the rotatable members 35′ and 35″ rotatably mounted thereon with the arms 40′ and 40″ each fixedly attached to one of the front wheel supports 20 and the rear wheel support 30 such that the front wheel support and the real wheel support fold about the handle support. As a further example, the rotatable members 35′ and 35″ were depicted as including the disks 36′ and 36″, however, in other implementations the rotatable members 35′ and 35″ may have other shapes. As an additional example, the depicted implementation aligned the tip 52 of the spring loaded head 50 of each folding assembly 22 with the notches 38′ and 38″ of the disks 36′ and 36″ to secure the stroller 12 into the fully folded state. In other implementations, each folding assemblies 22 can use a pin or other member that is inserted into holes in each of the disks 36′ and″ to hold the front wheel supports 20, the handle supports 24, and the rear wheel supports 30 in the unfolded state. Accordingly, the invention is not limited except as by the appended claims.

Manufacturing Process Of 3 In 1 Portable Baby Stroller

In recent years, the demand for convenience and versatility in baby products has led to the rise of 3-in-1 portable baby strollers. These innovative strollers offer parents the flexibility to use them as a stroller, car seat, and bassinet, all in one. But have you ever wondered how these multifunctional strollers are manufactured? In this blog post, we will take a closer look at the manufacturing process of 3-in-1 portable baby strollers, from design to assembly, and explore the intricate steps involved in creating these essential baby products.

1. Design and Conceptualization:

The manufacturing process of 3-in-1 portable baby strollers begins with the design and conceptualization phase. Designers and engineers work together to create a blueprint that incorporates the desired features, functionality, and safety standards. This phase involves extensive research, market analysis, and collaboration with experts in the field to ensure that the stroller meets the needs and preferences of parents while adhering to industry regulations.

2. Material Selection:

Once the design is finalized, the next step is to select the appropriate materials for the stroller's construction. The choice of materials is crucial as it affects the stroller's durability, weight, and overall performance. Common materials used in the manufacturing of 3-in-1 portable baby strollers include lightweight aluminum alloy frames, high-quality fabrics, and impact-resistant plastics. These materials are carefully chosen to provide a balance between strength, safety, and comfort.

3. Frame Manufacturing:

The frame is the backbone of any stroller, providing structural support and stability. The manufacturing of the frame involves cutting, bending, and welding aluminum alloy tubes to create the desired shape and structure. Computer Numerical Control (CNC) machines are often used to ensure precision and consistency in the manufacturing process. Once the frame is formed, it undergoes rigorous testing to ensure its strength and durability.

4. Fabrication of Seat and Bassinet:

The seat and bassinet are integral components of a 3-in-1 portable baby stroller, providing comfort and safety for the child. The fabrication process involves cutting and sewing high-quality fabrics, such as polyester or nylon, to create the seat and bassinet. Padding and cushioning materials are added to enhance comfort, while safety harnesses and buckles are incorporated to secure the child in place. The fabrics used are often water-resistant and easy to clean, considering the inevitable spills and messes that come with parenting.

5. Assembly and Integration:

Once the individual components are manufactured, the assembly process begins. Skilled workers meticulously put together the frame, seat, bassinet, wheels, and other accessories, ensuring that all parts fit together seamlessly. The integration of different functionalities, such as the car seat feature, requires careful alignment and testing to guarantee proper functionality and safety. Quality control checks are conducted at various stages of assembly to identify and rectify any defects or issues.

6. Quality Assurance and Safety Testing:

Before the 3-in-1 portable baby strollers are ready for market release, they undergo rigorous quality assurance and safety testing. These tests include checking for structural integrity, stability, and durability. Additionally, the strollers are subjected to safety tests, such as impact resistance, stability on different terrains, and compliance with safety standards set by regulatory bodies. Only after passing these tests are the strollers deemed safe for use by parents and their little ones.

Conclusion:

The manufacturing process of 3-in-1 portable baby strollers is a complex and intricate journey that involves careful design, material selection, fabrication, assembly, and rigorous testing. From the initial conceptualization to the final product, every step is crucial in ensuring that these strollers meet the highest standards of safety, functionality, and convenience. As parents continue to seek versatile and practical solutions for their baby's transportation needs, the manufacturing industry will continue to innovate and improve the manufacturing process of 3-in-1 portable baby strollers.

Suzhou Anri is an excellent portable baby strollers supplier. We will provide you with high-quality products and excellent services. Welcome to come for consultation at any time.

Want more information on how long can baby be in stroller? Feel free to contact us.