How do I know if glass is heat safe?

08 Apr.,2024

 

When thinking of some of the world’s most dramatic, visually breathtaking buildings, they most likely involve large expanses of glass. Before these architectural masterpieces can be created, the glass may need to be heat-treated for durability and/or safety reasons. The type of processing required—heat-strengthening or tempering—depends on the glass’ specific application.

There are two different types of heat-treated glasses, heat-strengthened and tempered. The similarities between the two include:

  • Production using the same processing equipment
  • Heating the glass to approximately 1,200 degrees Fahrenheit, then force-cooling it to create surface and edge compression

The differences between the two glasses are as follows:

  • With tempered glass, the cooling process is accelerated to create higher surface compression (the dimension of force or energy per unit area) and/or edge compression in the glass. It is the air-quench temperature, volume and other variables that create a surface compression of at least 10,000 pounds per square inch (psi). This is the process that makes the glass four to five times stronger and safer than annealed or untreated glass. As a result, tempered glass is less likely to experience a thermal break.
  • With heat-strengthened glass, the cooling process is slower, which means the compression strength is lower. In the end, heat-strengthened glass is approximately twice as strong as annealed, or untreated, glass.

The industry standard specification requirements for heat-treated or tempered glasses are ASTM C1048. For heat-strengthened glass, the requirement is a surface compression of 3,500 to 7,500 psi with no requirement for edge compression. Fully tempered glass will have either a minimum surface compression of 69 MPa (10,000 psi), or an edge compression of not less than 67 MPa (9,700 psi).

Safety glazings are typically specified to provide security or to keep occupants safe wherever there is the potential for broken glass to hurt people if it becomes a projectile, such as in a fire, explosion, tornado or hurricane.

Heat-strengthened glass is typically specified when additional strength is needed to resist wind pressure, thermal stress or both, and the additional strength or safety break pattern of fully tempered glass is not required. Another advantage of heat-strengthened glass is that when broken, the glass fragments are more similar in size and shape to annealed glass fragments and thus tend to stay in the opening longer than fully tempered glass particles. Although heat-strengthened glass is NOT a safety glazing by building code, this breakage pattern prevents the glass from falling and injuring someone.

Safety glazing is fully-tempered glass that meets the requirements of the safety glazing standard CPSC 16 CFR 1201 or ANSI Z97.1, or both. Safety glazing, when broken, fractures into relatively small pieces, thereby greatly reducing the likelihood of serious cutting or piercing injuries in comparison to ordinary annealed glass. For some applications, such as glass in doors, tub and shower enclosures and fixed glass in close proximity to a walking surface, fully-tempered safety glass is required by building codes and ordinances. Fully-tempered safety glass is often used for other applications where its strength and/or safety characteristic are desirable, such as table tops, counter tops, showcase enclosures, refrigeration and food service equipment, furniture and similar applications. Fully-tempered glass also is used in applications when significant additional strength is needed to resist wind pressure, thermal stress or both.

However, because of this break pattern, tempered glass is much more likely to fall from the glazing system immediately upon breakage. It’s essential for design professionals to consider this when selecting a safety glass. If it’s important for the glass to stay anchored in the glazing system, another form of safety glass, such as laminated glass, should be considered.

With both heat-strengthening and tempering, distortion is a possibility. Optical image distortion occurs in glass for many reasons, including glazing pressure, wind load, temperature and barometric pressure changes, or even changes in altitude between where a glass is made and where it is installed. Because of its fluidity at higher temperatures, glass also is inherently susceptible to roller wave, bow and warp while it is being heat-treated.

That’s why doing full-scale mock-ups under job-site conditions are recommended to evaluate the optical aesthetics of a specific heat-treating process. In addition, the following tips are suggested in order to minimize the potential impact of glass distortion that is inherent with heat-treating processes:

  • Produce all heat-treated glass for a given project on the same equipment, using the same processing parameters
  • Glass distortion may also occur due to strain patterns in heat-treated glass or interference fringe patterns in the fabrication of insulating glass units
  • Use thicker glass, as it is less prone to distortion
  • Orient heat-treated glass so that roller wave (the periodic wave imparted to glass during heat-treatment, measured by the peak-to-valley distance) is parallel to the window sill/header

While there is no industry standard to quantify permissible heat-treated glass roller wave, a tolerance of 0.005 inches is often specified. Vitro Architectural Glass (formerly PPG glass) recommends using a millidiopter specification instead, if it is available.

Safety is a prime consideration when determining the type of heat-treating process necessary for a project. Deciding whether to use heat-strengthened or tempered glass depends on the specific application. For example, heat-strengthened glass can be selected for applications that do not specifically require a safety glass product; and tempered glass should be used wherever safety glass is a requirement.

For complete technical information about using heat-treated vs. heat-strengthened glass, read Vitro Architecutral Glass Technical Document TD-138. For any other glass questions, please contact Vitro glass or call 1-855-VTRO-GLS (1-855-887-6457).

Heat-resistant glass can withstand high temperatures without cracking or breaking. Therefore, they are suitable for many applications, from making cookware and ovens to fireplace doors. Depending on the application, different types of heat resistant glass may be used, each with its unique properties and applications.

Here are some common types you should know:

Tempered Glass:

It is a type of heat-resistant glass that has been treated at high temperatures to make it extra strong. This makes it safer and more durable than regular glass, as it can withstand impacts and other physical shocks without breaking. It’s also resistant to thermal shock, which means it can handle rapid temperature changes without damage.

Tempered glass usually comes in two varieties: annealed and heat-strengthened. Annealed can withstand temperatures up to 250°C (482°F), while heat-strengthened ones have a maximum temperature rating of 350°C (662°F). This makes it suitable for applications such as fireplace doors, stovetop covers, skylights, and windows in areas with extreme weather.

They are also scratch-resistant and can be designed to be non-reflective, making them a great choice for outdoor applications. Furthermore, since it is four times stronger than regular glass, this type is more resistant to breakage in the event of an accident or impact.

Ceramic Glass:

Ceramic glass is made from silica, boron oxide, alumina, and other materials. It’s known for its high strength and thermal stability; ceramic glass can withstand temperatures up to 1000°C (1832°F). This makes it ideal for use in high-temperature environments such as fireplaces, kilns, and furnaces.

It’s also non-porous, so it won’t absorb liquids or odors. This makes it a great material for use in stoves and cookware where liquids are involved. It’s very scratch resistant as well, making it ideal for applications such as countertops and kitchen surfaces that are exposed to wear and tear.

It also blocks UV radiation, making it great for laboratory applications where UV radiation needs to be blocked.

Ceramic glass is more expensive than tempered or borosilicate glass because of its higher production cost. However, it’s durability and long-life span make up for the expense over time.

Soda-Lime Glass:

Soda-lime is the most common type used in commercial and residential applications. It’s made from a combination of sand, soda ash, calcium carbonate, and other materials. Compared to borosilicate and quartz, soda-lime isn’t as strong or heat resistant; it can withstand temperatures up to 350°C (662°F).

However, its low production cost makes it ideal for use in windows, lighting fixtures, oven doors, cookware, food storage containers, and even art projects. Its ability to be molded into different shapes also makes it a great choice for decorative purposes. Summary Heat-resistant glass is an essential material for many applications due to its ability to withstand extreme temperatures and impacts. Depending on your needs, you can select the right type, such as tempered, ceramic, quartz, or soda-lime. Each type has unique features and benefits, making it suitable for different purposes. With the right selection, you can be sure that your projects will remain safe and secure.

Summary

Heat-resistant glass is an essential material for many applications due to its ability to withstand extreme temperatures and impacts. Depending on your needs, you can select the right type, such as tempered, ceramic, quartz, or soda-lime. Each type has unique features and benefits, making it suitable for different purposes. With the right selection, you can be sure that your projects will remain safe and secure

How do I know if glass is heat safe?

Types of Heat Resistant Glass -